题目内容
【题目】如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.
(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.
(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?为什么?
【答案】(1)AR=AQ,证明见详解了;(2)AR=AQ,证明见详解.
【解析】
(1)根据等腰三角形的性质求出∠B=∠C,根据等角的余角相等求出∠BQP=∠PRC,再根据对顶角相等可得∠BQP=∠AQR,从而得到∠AQR=∠PRC,然后根据等角对等边证明即可;
(2)根据等腰三角形的性质求出∠ABC=∠C,再根据对顶角相等可得∠ABC=∠PBQ,从而得到∠C=∠PBQ,然后根据等角的余角相等求出∠Q=∠R,最后根据等角对等边证明即可.
(1)解:AR=AQ.
理由如下:∵△ABC是等腰三角形,
∴AB=AC,
∴∠B=∠C,
∵PR⊥BC,
∴∠B+∠BQP=90°,
∠C+∠PRC=90°,
∴∠BQP=∠PRC,
∵∠BQP=∠AQR(对顶角相等),
∴∠AQR=∠PRC,
∴AR=AQ;
(2)AR=AQ依然成立.
理由如下:∵△ABC是等腰三角形,
∴AB=AC,
∴∠ABC=∠C,
∵∠ABC=∠PBQ(对顶角相等),
∴∠C=∠PBQ,
∵PR⊥BC,
∴∠R+∠C=90°,∠Q+∠PBQ=90°,
∴∠Q=∠R,
∴AR=AQ.
【题目】某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.
收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是 ;(填序号)
①选择七年级1班、2班各15名学生作为调查对象
②选择机器人社团的30名学生作为调查对象
③选择各班学号为6的倍数的30名学生作为调查对象
调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:
A,C,D,D,G,G,F,E,B,G,
C,C,G,D,B,A,G,F,F,A,
G,B,F,G,E,G,A,B,G,G
整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.
某校七年级学生喜欢的课程领域统计表
课程领域 | 人数 |
A | 4 |
B | 4 |
C | 3 |
D | 3 |
E | 2 |
F | 4 |
G | 10 |
合计 | 30 |
分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是 (填A﹣G的字母代号),估计全年级大约有 名学生喜欢这个课程领域.