题目内容
【题目】如图1,点为正的边上一点(不与点重合),点分别在边上,且.
(1)求证:;
(2)设,的面积为,的面积为,求(用含的式子表示);
(3)如图2,若点为边的中点,求证: .
图1 图2
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)根据两角对应相等的两个三角形相似即可判断;
(2)如图2中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=BDEG=BDEG=aBEsin60°=aBE,S2=CDFH=bCF,可得S1S2=abBECF,由(1)得△BDE∽△CFD,,即BEFC=BDCD=ab,即可推出S1S2=a2b2;
(3)想办法证明△DFE∽△CFD,推出,即DF2=EFFC;
(1)证明:如图1中,
在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
∵∠EDF=∠B,
∴∠DEB=∠FDC,
又∠B=∠C,
∴△BDE∽△CFD.
(2)如图2中,分别过E,F作EG⊥BC于G,FH⊥BC于H,
S1=BDEG=BDEG=aBEsin60°=aBE,S2=CDFH=bCF,
∴S1S2=abBECF
由(1)得△BDE∽△CFD,
∴,即BEFC=BDCD=ab,
∴S1S2=a2b2.
(3)由(1)得△BDE∽△CFD,
∴,
又BD=CD,
∴,
又∠EDF=∠C=60°,
∴△DFE∽△CFD,
∴,即DF2=EFFC.
练习册系列答案
相关题目