题目内容
已知:如图,在等腰△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E,连接DE.求证:四边形BCDE是等腰梯形.
分析:已知△ABC为等腰三角形,BD⊥AC,CE⊥AB,可得∠ABC=∠ACB,然后证得△ABD≌△ACE,得出EB=DC,再证明DE∥CB,根据等腰梯形的判定,可证明四边形BCDE是等腰梯形.
解答:证明:∵CE⊥AB,BD⊥AC,
∴∠BDA=∠CEA=90°,
在等腰△ABC中,AB=AC,
在△ABD和△ACE中,
∵
,
∴△ABD≌△ACE(AAS).
∴AE=AD.
∴AB-AE=AC-AD,
即BE=CD,
∴
=
,∠A=∠A,
∴△AED∽△ABC,
∴∠AED=∠ABC.
∴ED∥BC.
又∵BE,CD不平行,
∴四边形BCDE是梯形.
∴四边形BCDE是等腰梯形.
(理由:同一底上的两底角相等的梯形是等腰梯形,或两腰相等的梯形是等腰梯形).
∴∠BDA=∠CEA=90°,
在等腰△ABC中,AB=AC,
在△ABD和△ACE中,
∵
|
∴△ABD≌△ACE(AAS).
∴AE=AD.
∴AB-AE=AC-AD,
即BE=CD,
∴
AE |
AB |
AD |
AC |
∴△AED∽△ABC,
∴∠AED=∠ABC.
∴ED∥BC.
又∵BE,CD不平行,
∴四边形BCDE是梯形.
∴四边形BCDE是等腰梯形.
(理由:同一底上的两底角相等的梯形是等腰梯形,或两腰相等的梯形是等腰梯形).
点评:本题考查的是等腰梯形的判定以及等腰三角形的性质,关键是先求出BE=CD,然后利用等腰梯形的判定证明即可.
练习册系列答案
相关题目