题目内容
【题目】如图,在△OAC中,以点O为圆心、OA长为半径作⊙O,作OB⊥OC交⊙O于点B,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=10,OD=2,求线段AC的长.
【答案】(1)AC是⊙O的切线(2)线段AC的长为24
【解析】试题分析:(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,可得AC是⊙O的切线;
(2)根据“等角对等边”可以推知AC=DC,所以由图形知OC=OD+CD;然后利用(1)中切线的性质可以在Rt△OAC中,根据勾股定理来求AC的长度.
试题解析:解:(1)AC是⊙O的切线.证明:∵点A,B在⊙O上,∴OB=OA,∴∠OBA=∠OAB,∵∠CAD=∠CDA=∠BDO,∴∠CAD+∠OAB=∠BDO+∠OBA,∵BO⊥OC,
∴∠BDO+∠OBA=90°,∴∠CAD+∠OAB=90°,∴∠OAC=90°,即OA⊥AC,又∵OA是⊙O的半经,∴AC是⊙O的切线;
(2)设AC的长为x.∵∠CAD=∠CDA,∴CD的长为x.由(1)知OA⊥AC,
∴在Rt△OAC中,OA2+AC2=OC2,即102+x2=(2+x)2,∴x=24,
即线段AC的长为24.
练习册系列答案
相关题目