题目内容
【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(,0) B.(1,0) C.(,0) D.(,0)
【答案】D
【解析】
试题分析:∵把A(,y1),B(2,y2)代入反比例函数得:y1=2,y2=,
∴A(,2),B(2,),
∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,
把A、B的坐标代入得: ,
解得:k=﹣1,b=,
∴直线AB的解析式是y=﹣x+,
当y=0时,x=,
即P(,0),
故选:D.
练习册系列答案
相关题目