题目内容
【题目】如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处。若AB=6,BE:EC=4:1,则线段DE的长为_______.
【答案】
【解析】由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC.
由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE,
∴DF=DC,∠DFE=∠C=90°,
∴DF=AB,∠AFD=90°,
∴∠AFD=∠B,
由AD∥BC得∠DAF=∠AEB,
∴在△ABE与△DFA中,
∵∠AEB=∠DAF,∠B=∠AFD,AB=DF,
∴△ABE≌△DFA(AAS).
∵由BE:EC=4:1,
∴设CE=x,BE=4x,则AD=BC=5x,
由△ABE≌△DFA,得AF=BE=4x,
在Rt△ADF中,由勾股定理可得DF=3x,
又∵DF=CD=AB=6,
∴x=2,
在Rt△DCE中,
.
故答案是: .
练习册系列答案
相关题目