题目内容
(2009•南宁)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;
(2)求阴影部分的面积(结果保留π).
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_ST/images0.png)
【答案】分析:(1)中根据圆的切线的性质及对称性,可确定图中的全等三角形;
(2)阴影部分的面积可转化为扇形面积从而利用公式进行计算.
解答:解:(1)△ACO≌△BCO,△APC≌△BPC,△PAO≌△PBO;
(2)∵PA、PB为⊙O的切线,
∴PO平分∠APB,PA=PB,∠PAO=90°,
∴PO⊥AB,(6分)
∴由圆的对称性可知:S阴影=S扇形AOD,
∵在Rt△PAO中,∠APO=
∠APB=
×60°=30°,
∴∠AOP=90°-∠APO=90°-30°=60°,
∴S阴影=S扇形AOD=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_DA/2.png)
=
.
点评:主要考查了圆的对称性和扇形的面积公式.
(2)阴影部分的面积可转化为扇形面积从而利用公式进行计算.
解答:解:(1)△ACO≌△BCO,△APC≌△BPC,△PAO≌△PBO;
(2)∵PA、PB为⊙O的切线,
∴PO平分∠APB,PA=PB,∠PAO=90°,
∴PO⊥AB,(6分)
∴由圆的对称性可知:S阴影=S扇形AOD,
∵在Rt△PAO中,∠APO=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_DA/1.png)
∴∠AOP=90°-∠APO=90°-30°=60°,
∴S阴影=S扇形AOD=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_DA/2.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021225942641524561/SYS201310212259426415245018_DA/3.png)
点评:主要考查了圆的对称性和扇形的面积公式.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目