题目内容
【题目】如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF:FG:GD=3:2:1,则AB的长为( )
A.1
B.
C.
D.2
【答案】C
【解析】解:∵四边形ABCD是矩形, ∴AB=CD,AD=BC=6,∠A=∠D=90°,
∵∠E=90°,
∴∠EFG+∠EGF=90°,
∴∠AFB+∠DGC=90°,
∵∠AFB+∠ABF=90°,
∴∠ABF=∠DGC,
∴△AFB∽△DCG,
∴ ,
∵AF:FG:GD=3:2:1,
∴AF=3,DG=1,
∴AB2=AFDG=3,
∴AB= .
故选C.
【考点精析】掌握矩形的性质和相似三角形的判定与性质是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目