ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£ºÎª½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1¿´×÷Ò»¸öÕûÌ壬
Éèx2-1=y¡¢Ù£¬
ÄÇôԷ½³Ì¿É»¯Îªy2-5y+4=0£¬½âµÃy1=1£¬y2=4£¬
µ±y=1ʱ£¬x2-1=1£¬¡àx2=2£¬¡àx=¡À
£»
µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡À
£¬
¹ÊÔ·½³ÌµÄ½âΪx1=
£¬x2=-
£¬x3=
£¬x4=-
£®
ÒÔÉϽâÌâ·½·¨½Ð×ö»»Ôª·¨£¬ÔÚÓÉÔ·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½Á˽ⷽ³ÌµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룻ÇëÀûÓÃÒÔÉÏ֪ʶ½â·½³Ì£º
£¨1£©x4-x2-6=0£® £¨2£©£¨x2+x£©2+£¨x2+x£©=6£®
Éèx2-1=y¡¢Ù£¬
ÄÇôԷ½³Ì¿É»¯Îªy2-5y+4=0£¬½âµÃy1=1£¬y2=4£¬
µ±y=1ʱ£¬x2-1=1£¬¡àx2=2£¬¡àx=¡À
2 |
µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡À
5 |
¹ÊÔ·½³ÌµÄ½âΪx1=
2 |
2 |
5 |
5 |
ÒÔÉϽâÌâ·½·¨½Ð×ö»»Ôª·¨£¬ÔÚÓÉÔ·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½Á˽ⷽ³ÌµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룻ÇëÀûÓÃÒÔÉÏ֪ʶ½â·½³Ì£º
£¨1£©x4-x2-6=0£® £¨2£©£¨x2+x£©2+£¨x2+x£©=6£®
·ÖÎö£ºÔĶÁÌâÄ¿Àí½âÇå¡°»»Ôª·¨¡±µÄ½â·¨£¬È»ºó°´ÕâÖÖ·½·¨½â´ð£®
½â´ð£º½â£º£¨1£©x4-x2-6=0
Éèx2=y£¬ÔòÔ·½³Ì¿É»¯Îª
y2-y-6=0£¬½âµÃy1=3£¬y2=-2£¨ÉáÈ¥£©£¬
µ±y=3ʱ£¬x2=3£¬¡àx=¡À
¡àÔ·½³ÌµÄ½âΪx=¡À
£»
£¨2£©£¨x2+x£©2+£¨x2+x£©=6
Éèx2+x=y£¬ÔòÔ·½³Ì¿É»¯Îª
y2+y=6£¬½âµÃy1=-3£¨ÉáÈ¥£©£¬y2=2£¬
µ±y=2ʱ£¬x2+x=2£¬½âµÃx1=-2£¬x2=1£¬
ËùÒÔÔ·½³ÌµÄ½âΪx1=-2£¬x2=1£®
Éèx2=y£¬ÔòÔ·½³Ì¿É»¯Îª
y2-y-6=0£¬½âµÃy1=3£¬y2=-2£¨ÉáÈ¥£©£¬
µ±y=3ʱ£¬x2=3£¬¡àx=¡À
3 |
¡àÔ·½³ÌµÄ½âΪx=¡À
3 |
£¨2£©£¨x2+x£©2+£¨x2+x£©=6
Éèx2+x=y£¬ÔòÔ·½³Ì¿É»¯Îª
y2+y=6£¬½âµÃy1=-3£¨ÉáÈ¥£©£¬y2=2£¬
µ±y=2ʱ£¬x2+x=2£¬½âµÃx1=-2£¬x2=1£¬
ËùÒÔÔ·½³ÌµÄ½âΪx1=-2£¬x2=1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁË»»Ôª·¨£¬¼´°Ñij¸öʽ×Ó¿´×÷Ò»¸öÕûÌ壬ÓÃÒ»¸ö×Öĸȥ´úÌæËü£¬ÊµÐеÈÁ¿Ìæ»»£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿