题目内容
在复习《反比例函数》时,小明两次分别从1到6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P的纵坐标,则认为点P在函数y=
的图象上的概率一定大于在函数y=
的图象上的概率,而小芳却认为两者的概率相同.
(1)试用列表或画树状图的方法列举出所有点点P(m,n)的情形;
(2)分别求出点点P(m,n)在两个函数的图象上的概率,并说明谁的观点正确.
12 |
x |
6 |
x |
(1)试用列表或画树状图的方法列举出所有点点P(m,n)的情形;
(2)分别求出点点P(m,n)在两个函数的图象上的概率,并说明谁的观点正确.
分析:(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验;
(2)依据(1)分析求得所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)依据(1)分析求得所有等可能的出现结果,然后根据概率公式求出该事件的概率.
解答:解:(1)列表得:
(2)∵一共有36种可能的结果,且每种结果的出现可能性相同,
点(3,4),(4,3),(2,6),(6,2)在反比例函数y=
的图象上,
点(2,3),(3,2),(1,6),(6,1)在反比例函数y=
的图象上,
∴点P(m,n)在两个反比例函数的图象上的概率都为:
=
,
∴小芳的观点正确.
第二个数 第一个数 |
1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
点(3,4),(4,3),(2,6),(6,2)在反比例函数y=
12 |
x |
点(2,3),(3,2),(1,6),(6,1)在反比例函数y=
6 |
x |
∴点P(m,n)在两个反比例函数的图象上的概率都为:
4 |
36 |
1 |
9 |
∴小芳的观点正确.
点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目