题目内容
【题目】探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
【答案】(1)详见解析;(2)①50°;②85°;③63°.
【解析】
(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;
(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;
②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;
③由②得∠BG1C=(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得(133-x)+x=70,求出x的值即可.
(1)如图(1),连接AD并延长至点F,
根据外角的性质,可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°;
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴(∠ADB+∠AEB)=90°÷2=45°,
∵DC平分∠ADB,EC平分∠AEB,
∴,,
∴∠DCE=∠ADC+∠AEC+∠DAE,
=(∠ADB+∠AEB)+∠DAE,
=45°+40°,
=85°;
③由②得∠BG1C=(∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴设∠A为x°,
∵∠ABD+∠ACD=133°-x°
∴(133-x)+x=70,
∴13.3-x+x=70,
解得x=63,
即∠A的度数为63°.