题目内容

【题目】如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:∠FBC=∠FCB;
(2)已知FAFD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.

【答案】
(1)

证明:∵四边形AFBC内接于圆,

∴∠FBC+∠FAC=180°,

∵∠CAD+∠FAC=180°,

∴∠FBC=∠CAD,

∵AD是△ABC的外角∠EAC的平分线,

∴∠EAD=∠CAD,

∵∠EAD=∠FAB,

∴∠FAB=∠CAD,

又∵∠FAB=∠FCB,

∴∠FBC=∠FCB;


(2)

解:由(1)得:∠FBC=∠FCB,

又∵∠FCB=∠FAB,

∴∠FAB=∠FBC,

∵∠BFA=∠BFD,

∴△AFB∽△BFD,

∴BF2=FAFD=12,

∴BF=2

∵FA=2,

∴FD=6,AD=4,

∵AB为圆的直径,

∴∠BFA=∠BCA=90°,

∴tan∠FBA= = =

∴∠FBA=30°,

又∵∠FDB=∠FBA=30°,

∴CD=ADcos30°=4× =2


【解析】(1)由圆内接四边形的性质和邻补角关系证出∠FBC=∠CAD,再由角平分线和对顶角相等得出∠FAB=∠CAD,由圆周角定理得出∠FAB=∠FCB,即可得出结论;
    (2)由(1)得:∠FBC=∠FCB,由圆周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,证出△AFB∽△BFD,得出对应边成比例求出BF,得出FD、AD的长,由圆周角定理得出∠BFA=∠BCA=90°,由三角函数求出∠FBA=30°,再由三角函数求出CD的长即可.本题考查了相似三角形的判定与性质、圆周角定理、圆内接四边形的性质、三角函数等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网