题目内容
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点A、B的距离为时,求出此二次函数的解析式.
(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.
解(1)因为△=a2-4(a-2)=(a-2)2+4>0,所以不论a为何实数,此函数图象与x轴总有两个交点.
(2)设x1、x2是x2+ax+a-2=0的两个根,由韦达定理得,
x1+x2=-a,x1x2=a-2,
因两交点的距离是AB=,所以
=
=
.
即(x1-x2)2=13,
变形为(x1+x2)2-4x1x2=13,所以(-a)2-4(a-2)=13
整理,得a2-4a-5=0,解得a1=5,或a2=-1.
又因为a<0,所以a=-1,
所以此二次函数的解析式为y=x2-x-3.
(3)设点P的坐标为(x0,y0),
因为AB=.
所以S△PAB=AB·
=
,所以
=
,
所以=3,则y0=±3.
当y0=3时,x02-x0-3=3,解得x0=-2,或3;
当y0=-3时,x02-x0-3=-3,解得x0=0,或1.
综上所述, P点坐标是(-2,3),(3,3),(0,-3)或(1,-3).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目