题目内容
【题目】已知,如图,在△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为lcm/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:
(1)线段AD=___cm;
(2)求证:PB=PQ;
(3)当t为何值时,以P、Q、D、M为顶点的四边形为平行四边形.
【答案】(1)AD=12cm;(2)证明见解析;(3)t=s或4s
【解析】
(1)由勾股定理求出AD即可;
(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;
(3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;
②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.
(1)解:∵BD⊥AC,
∴∠ADB=90°,
∴AD=,
故答案为:12;
(2)证明:∵AB=AC,
∴∠ABC=∠C,即∠PBQ=∠C,
∵PQ∥AC,
∴∠PQB=∠C,
∴∠PBQ=∠PQB,
∴PB=PQ;
(3)分两种情况:
①当点M在点D的上方时,如图所示
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AD-AM=12-4t,
∵PQ∥AC,
∴PQ∥MD,
当PQ=MD时,四边形PQDM是平行四边形,
∴t=12-4t,
解得:t=(s);
②当点M在点D的下方时,如图所示:
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AM-AD=4t-12,
∵PQ∥AC,
∴PQ∥MD,
当PQ=MD时,四边形PQDM是平行四边形,
∴t=4t-12,
解得:t=4(s);
综上所述,当t=s或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形;
故答案为:s或4s.