题目内容
(本题满分7分)如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论?
证明:(1)∵四边形ABCD是菱形,
∴AD=CD,∠ADE=∠CDB;
又∵DE=DE,
∴△ADE≌△CDE,
∴∠DAE=∠DCE.
(2)我判断FG=3EF.
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠DAE=∠G,
∵∠DAE=∠DCE,
∴∠DCE=∠G,
∵∠CEF=∠GEC,
∴△ECF∽△EGC,
∴EF/CE=CE/EG,
∵△ADE≌△CDE,
∴AE=CE,
∴EF/CE=CE/EG=1/2,
∵AE=2EF,
∴EG=2AE=4EF,
∴FG=EG-EF=4EF-EF=3EF
解析
练习册系列答案
相关题目
.(本题满分5分)如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.
1.若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为 cm.
2.由题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:
问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?