题目内容
【题目】在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.
(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;
(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.
【答案】(1)成立.(2)成立.见解析
【解析】
试题分析:(1)成立,根据等腰三角形的性质就可以求出∠BAE=∠CAE,再证明△ABE≌△ACE就可以得出结论;
(2)成立,由BF⊥AC,∠BAC=45°就可以求出AF=BF,在由条件证明△AEF≌△BCF就可以得出结论.
解:(1)成立.
理由:
∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.
在△ABE和△ACE中,
∴△ABE≌△ACE( SAS )
∴BE=CE.
(2)成立.
理由:
∵∠BAC=45°,BF⊥AF.
∴△ABF为等腰直角三角形
∴AF=BF…
由(1)知AD⊥BC,
∴∠EAF=∠CBF
在△AEF和△BCF中,
.
∴△AEF≌△BCF( AAS ),
∴EF=CF.
练习册系列答案
相关题目
【题目】某公司销售一种进价为20 (元/个)的计算器,其销售量y (万个)与销售价格x (元/个)之间为一次函数关系,其变化如下表:
价格x (元/个) | … | 30 | 50 | … |
销售量y (万个) | … | 5 | 3 | … |
同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?
(注:净利润=总销售额﹣总进价﹣其他开支)