题目内容

【题目】如图,在平行四边形ABCD中,

(1)以点A为圆心,AB长为半径画弧交AD于点F,再分别以B、F为圆心,大于 BF长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF;
(2)四边形ABEF是(选填矩形、菱形、正方形、无法确定),说明理由.

【答案】
(1)

解:如图所示;


(2)菱形
【解析】菱形,理由如下:
∵在平行四边形ABCD中,AF∥BC,
∴∠FAE=∠AEB,
由(1)知∠BAE=∠FAE,
∴∠BAE=∠AEB,
∴AB=BE,
∵AB=AF,
∴BE=AF,
∴四边形ABEF是菱形,
所以答案是:菱形.
(1)根据要求作图即可;(2)由(1)作图知∠BAE=∠FAE,结合∠FAE=∠AEB得∠BAE=∠AEB,从而得AB=BE,进一步由菱形的判定可得.
【考点精析】根据题目的已知条件,利用平行四边形的性质的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网