题目内容
【题目】如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为( )
A. 或-B. 或-C. 或-D. 或-
【答案】D
【解析】
分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.
如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,
∴A(﹣1,0),B(1,0),C(1,1).
当点P在OB上时.易求G(,1)
∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,
则AP+AD+DG=3+x,CG+BC+BP=3﹣x,
由题意可得:3+x=2(3﹣x),
解得x=.
由对称性可求当点P在OA上时,x=﹣.
故选:D.
练习册系列答案
相关题目