题目内容
【题目】如图1,在四边形ABCD中,AB=BC=CD=AD=4cm,∠BAD=∠B=∠C=∠ADC=90°,点P以1cm/s的速度自点A向终点B运动,点Q同时以1cm/s的速度自点B向终点C运动,连接AQ、DP,设运动时间为t s.
(1)当t= s时,点P到达点B;
(2)求证:在运动过程中,△ABQ≌△DAP始终成立;
(3)如图2,作QM∥PD,且QM=PD,作MN⊥射线BC于点N,连接CM,请问在Q的运动过程中,∠MCN的度数是否改变?如果不变,请求出∠MCN;如果改变,请说明理由.
【答案】(1)4;(2)证明见解析;(3)∠MCN=45°.
【解析】
(1)根据AB=4cm,点P以1cm/s的速度自点A向终点B运动计算即可;
(2)根据题意得到AP=BQ,利用SAS定理证明;
(3)根据全等三角形的性质得到QM=AQ,∠AQB=∠QMN,证明△AQB≌△QMN,根据全等三角形的性质得到QN=AB,MN=BQ,结合图形证明即可.
(1)∵AB=4cm,点P以1cm/s的速度自点A向终点B运动,
∴点P到达点B所用的时间为:4÷1=4(s),
故答案为:4;
(2)在运动过程中,AP=BQ=t,
在△ABQ和△DAP中,
,
∴△ABQ≌△DAP;
(3)∠MCN的度不改变,始终为45°,
理由如下:∵△ABQ≌△DAP,
∴AQ=DP,
∵QM=PD,
∴QM=AQ,
∵△ABQ≌△DAP,
∴∠BAQ=∠ADP,
∵∠BAQ+∠DAQ=90°,
∴∠ADP+∠DAQ=90°,即∠AED=90°,
∵QM∥PD,
∴∠AQM=∠AED=90°,
∴∠AQB+∠MQN=90°,
∴∠AQB=∠QMN,
在△AQB和△QMN中,
,
∴△AQB≌△QMN,
∴QN=AB,MN=BQ,
∴BC=QN,
∴BC-QC=QN-QC,即BQ=CN,
∴MN=CN,
∴∠MCN=45°.