题目内容
【题目】已知一元二次方程(m﹣3)x2+2mx+m+1=0有两个不相等的实数根,并且这两个根又不互为相反数.
(1)求m的取值范围;
(2)当m在取值范围内取最小正偶数时,求方程的根.
【答案】(1)m>且m≠0且m≠3;(2).
【解析】试题分析:(1)方程有不相等的实数根下必须满足△=b2-4ac>0,又由两个根又不互为相反数,二次项系数不为0,解得m的范围.(2)找到m的最小正偶数值,即可得到方程,然后解方程.
试题解析:(1)方程有不相等的实数根,
△=b2﹣4ac=4m2﹣4(m﹣3)(m+1)>0,
解得
∵两个根又不互为相反数,
解得m≠0,
故m且m≠0且m≠3.
(2)当m在取值范围内取最小正偶数时,
m=2时,方程是:﹣x2+4x+3=0
解得
练习册系列答案
相关题目