题目内容
【题目】如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.
【答案】45°.
【解析】试题分析:先利用三角形外角性质求出∠EAB+∠FBA=270°,DA,DB是角平分线,所以 ∠DAB+∠DBA=135°,易得∠D度数.
试题解析:
解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,
∵AD、BD分别是∠EAB,∠ABF的平分线,
∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,
∵∠C=90°,
∴∠ABC+∠BAC=180°﹣90°=90°,
∴∠DAB+∠DBA=×90°+90°=135°,
在△ABD中,∠D=180°﹣135°=45°.
练习册系列答案
相关题目
【题目】体育课上,对七年级1班的男生进行了100米测试,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.
-0.8 | +1 | -1.2 | 0 | -0.7 | +0.6 | -0.4 | -0.1 |
问:(1)这个小组男生的达标率为多少?
(2)这个小组男生的平均成绩是多少秒?