题目内容
【题目】乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式);
(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达).
【答案】(1)a2﹣b2;(2)a﹣b;a+b;(a﹣b)(a+b);(3)(a+b)(a﹣b)=a2﹣b2 .
【解析】试题分析:(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;
(2)利用矩形公式即可求解;
(3)利用面积相等列出等式即可;
试题解析:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;
故答案为:a2﹣b2;
(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b),
故答案为:a﹣b,a+b,(a+b)(a﹣b);
(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);
故答案为:(a+b)(a﹣b)=a2﹣b2.
练习册系列答案
相关题目