ÌâÄ¿ÄÚÈÝ
ÒÑÖª£º·´±ÈÀýº¯Êý£¨1£©µ±m=1ʱ£¬k1=______£»
£¨2£©µ±m=1ʱ£¬k1+k2+k3=______£»
£¨3£©¢Ùµ±m=2ʱ£¬Çók1+k2+k3+¡+k20µÄÖµ£¬²¢Ð´³öÇó½â¹ý³Ì£®
¢ÚÓÃm¡¢n±íʾk1+k2+k3+¡+knµÄÖµ£¨Ö±½Óд³ö½á¹û£©£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉ·´±ÈÀýº¯ÊýµÄ½âÎöʽy=
¿ÉÈ·¶¨µãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
£©£¬ÔÙ°ÑËüÃÇ´úÈëy=k1x+b1µÃµ½k1+b1=1¢Ù£¬2k1x+b1=
¢Ú£¬È»ºóÓâÚ-¢Ù¿ÉÇóµÃk1=
-1=-
£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬¿ÉÈ·¶¨µãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬Ó루1£©Ò»ÑùµÃµ½k2=
-
£¬k3=
-
£¬Ò׵õ½k1+k2+k3µÄÖµ£»
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬ÏÈÈ·¶¨µãA1×ø±êΪ£¨1£¬2£©£¬µãA2×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA20×ø±êΪ£¨20£¬
£©£¬µãA21×ø±êΪ£¨21£¬
£©£¬·ÂÕÕ£¨1£©µÃµ½k1=
-
£¬k2=
-
£¬k3=
-
£¬¡£¬k20=
-
£¬Ôòk1+k2+k3+¡+k20=
-
+
-
+
-
+¡+
-
£¬È»ºó½øÐмӼõÔËËã¼´¿É£»
¢ÚÏȵõ½µãA1×ø±êΪ£¨1£¬m£©£¬µãA2×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãAn×ø±êΪ£¨n£¬
£©£¬µãAn+1×ø±êΪ£¨n+1£¬
£©£¬ÔÙͬÑù¿ÉµÃµ½k1=
-m£¬k2=
-
£¬k3=
-
£¬¡£¬kn=
-
£¬Ôòk1+k2+k3+¡+kn=
-m+
-
+
-
+¡+
-
£¬È»ºó½øÐзÖʽµÄ¼Ó¼õÔËËã¼´¿É£®
½â´ð£º½â£º£¨1£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
¡àµãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
£©£¬
°ÑµãA1£¨1£¬1£©£¬µãA2£¨2£¬
£©´úÈëy=k1x+b1µÃ
k1+b1=1¢Ù£¬
2k1x+b1=
¢Ú
¡à¢Ú-¢ÙµÃk1=
-1=-
£»
¹Ê´ð°¸Îª-
£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
µãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬
Ó루1£©Ò»Ñù£¬k2=
-
£¬k3=
-
£¬
¡àk1+k2+k3=
-1+
-
+
-
=-1+
=-
£»
¹Ê´ð°¸Îª-
£»
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
¡àµãA1×ø±êΪ£¨1£¬2£©£¬µãA2×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA20×ø±êΪ£¨20£¬
£©£¬µãA21×ø±êΪ£¨21£¬
£©£¬
Ó루1£©Ò»Ñù£¬k1=
-
£¬k2=
-
£¬k3=
-
£¬¡£¬k20=
-
£¬
¡àk1+k2+k3+¡+k20=
-
+
-
+
-
+¡+
-
=-2+
=-
£»
¢ÚµãA1×ø±êΪ£¨1£¬m£©£¬µãA2×ø±êΪ£¨2£¬
£©£¬µãA3µÄ×ø±êΪ£¨3£¬
£©£¬µãA4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãAn×ø±êΪ£¨n£¬
£©£¬µãAn+1×ø±êΪ£¨n+1£¬
£©£®
Ó루1£©Ò»Ñù£¬k1=
-m£¬k2=
-
£¬k3=
-
£¬¡£¬kn=
-
£¬
¡àk1+k2+k3+¡+kn=
-m+
-
+
-
+¡+
-
=-m+
=-
£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺µãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÔòµãµÄ×ø±êÂú×ãÆä½âÎöʽ£»ÔËÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»ÊìÁ·ÕÆÎÕ·ÖÊýÓë·ÖʽµÄÔËË㣮
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
¢ÚÏȵõ½µãA1×ø±êΪ£¨1£¬m£©£¬µãA2×ø±êΪ£¨2£¬
½â´ð£º½â£º£¨1£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
¡àµãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
°ÑµãA1£¨1£¬1£©£¬µãA2£¨2£¬
k1+b1=1¢Ù£¬
2k1x+b1=
¡à¢Ú-¢ÙµÃk1=
¹Ê´ð°¸Îª-
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
µãA1µÄ×ø±êΪ£¨1£¬1£©£¬µãA2µÄ×ø±êΪ£¨2£¬
Ó루1£©Ò»Ñù£¬k2=
¡àk1+k2+k3=
¹Ê´ð°¸Îª-
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
¡àµãA1×ø±êΪ£¨1£¬2£©£¬µãA2×ø±êΪ£¨2£¬
Ó루1£©Ò»Ñù£¬k1=
¡àk1+k2+k3+¡+k20=
¢ÚµãA1×ø±êΪ£¨1£¬m£©£¬µãA2×ø±êΪ£¨2£¬
Ó루1£©Ò»Ñù£¬k1=
¡àk1+k2+k3+¡+kn=
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺µãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÔòµãµÄ×ø±êÂú×ãÆä½âÎöʽ£»ÔËÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»ÊìÁ·ÕÆÎÕ·ÖÊýÓë·ÖʽµÄÔËË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÒ»¸ö·´±ÈÀýº¯ÊýµÄͼÏó£¬ÒªÈ·¶¨Õâ¸öº¯ÊýµÄ±í´ïʽ£¬ÖÁÉÙÐèÒªÖªµÀͼÏóÉϼ¸¸öµãµÄ×ø±ê£¿´ð£º£¨¡¡¡¡£©
| A¡¢1¸ö | B¡¢2¸ö | C¡¢3¸ö | D¡¢4¸ö |