题目内容

【题目】如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)请添加一个条件使四边形BEDF为菱形.

【答案】见解析

【解析】

(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.

(1)∵四边形ABCD是平行四边形,OBD的中点,

∴AB∥DC,OB=OD,

∴∠OBE=∠ODF,

∵∠BOE=∠DOF,

∴△BOE≌△DOF(ASA),

∴EO=FO,

四边形BEDF是平行四边形;

(2)EF⊥BD.

四边形BEDF是平行四边形,

∵EF⊥BD,

平行四边形BEDF是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网