题目内容

(本题满分12分)

如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC,

(1)       求点B的坐标;

(2)       点P从C点出发,沿线段CO以1个单位/秒的速度向终点O匀速运动,过点P作PH⊥OC,交折线C-B-O于点H,设点P的运动时间为秒(),

①是否存在某个时刻,使△OPH的面积等于△OBC面积的?若存在,求出 

  的值,若不存在,请说明理由;

②以P为圆心,PC长为半径作⊙P,当⊙P与线段OB只有一个公共点时,求的值或的取值范围

 

【答案】

 

(1)B(6,8)

(2)①7

【解析】(1)B(6,8)      

(2)① 时 , , 舍去);

 时 , , 舍去); 

第1问2分,第2问6分,第3问4分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网