ÌâÄ¿ÄÚÈÝ
£¨2012•¾£ÖÝ£©Èçͼ¼×£¬ËıßÐÎOABCµÄ±ßOA¡¢OC·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬¶¥µãÔÚBµãµÄÅ×ÎïÏß½»xÖáÓÚµãA¡¢D£¬½»yÖáÓÚµãE£¬Á¬½ÓAB¡¢AE¡¢BE£®ÒÑÖªtan¡ÏCBE=
£¬A£¨3£¬0£©£¬D£¨-1£¬0£©£¬E£¨0£¬3£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãBµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ»
£¨3£©ÊÔ̽¾¿×ø±êÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©Éè¡÷AOEÑØxÖáÕý·½ÏòƽÒÆt¸öµ¥Î»³¤¶È£¨0£¼t¡Ü3£©Ê±£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖµÄÃæ»ýΪs£¬ÇósÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö¸³ötµÄÈ¡Öµ·¶Î§£®
1 | 3 |
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãBµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ»
£¨3£©ÊÔ̽¾¿×ø±êÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©Éè¡÷AOEÑØxÖáÕý·½ÏòƽÒÆt¸öµ¥Î»³¤¶È£¨0£¼t¡Ü3£©Ê±£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖµÄÃæ»ýΪs£¬ÇósÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö¸³ötµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÒÑÖªA¡¢D¡¢EÈýµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¿ÉÈ·¶¨Å×ÎïÏߵĽâÎöʽ£¬½ø¶øÄܵõ½¶¥µãBµÄ×ø±ê£®
£¨2£©¹ýB×÷BM¡ÍyÖáÓÚM£¬ÓÉA¡¢B¡¢EÈýµã×ø±ê£¬¿ÉÅжϳö¡÷BME¡¢¡÷AOE¶¼ÎªµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ò×Ö¤µÃ¡ÏBEA=90¡ã£¬¼´¡÷ABEÊÇÖ±½ÇÈý½ÇÐΣ¬¶øABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£¬Òò´ËÖ»ÐèÖ¤Ã÷ABÓëCB´¹Ö±¼´¿É£®BE¡¢AE³¤Ò׵ã¬ÄÜÇó³ötan¡ÏBAEµÄÖµ£¬½áºÏtan¡ÏCBEµÄÖµ£¬¿ÉµÃµ½¡ÏCBE=¡ÏBAE£¬ÓÉ´ËÖ¤µÃ¡ÏCBA=¡ÏCBE+¡ÏABE=¡ÏBAE+¡ÏABE=90¡ã£¬´ËÌâµÃÖ¤£®
£¨3£©¡÷ABEÖУ¬¡ÏAEB=90¡ã£¬tan¡ÏBAE=
£¬¼´AE=3BE£¬ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬ÄÇô¸ÃÈý½ÇÐαØÐëÂú×ãÁ½¸öÌõ¼þ£º¢ÙÓÐÒ»¸ö½ÇÊÇÖ±½Ç¡¢¢ÚÁ½Ö±½Ç±ßÂú×ã1£º3µÄ±ÈÀý¹Øϵ£»È»ºó·ÖÇé¿ö½øÐÐÇó½â¼´¿É£®
£¨4£©¹ýE×÷EF¡ÎxÖá½»ABÓÚF£¬µ±EµãÔ˶¯ÔÚEFÖ®¼äʱ£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖÊǸöËıßÐΣ»µ±EµãÔ˶¯µ½FµãÓÒ²àʱ£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖÊǸöÈý½ÇÐΣ®°´ÉÏÊöÁ½ÖÖÇé¿ö°´Í¼ÐÎÖ®¼äµÄºÍ²î¹Øϵ½øÐÐÇó½â£®
£¨2£©¹ýB×÷BM¡ÍyÖáÓÚM£¬ÓÉA¡¢B¡¢EÈýµã×ø±ê£¬¿ÉÅжϳö¡÷BME¡¢¡÷AOE¶¼ÎªµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ò×Ö¤µÃ¡ÏBEA=90¡ã£¬¼´¡÷ABEÊÇÖ±½ÇÈý½ÇÐΣ¬¶øABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£¬Òò´ËÖ»ÐèÖ¤Ã÷ABÓëCB´¹Ö±¼´¿É£®BE¡¢AE³¤Ò׵ã¬ÄÜÇó³ötan¡ÏBAEµÄÖµ£¬½áºÏtan¡ÏCBEµÄÖµ£¬¿ÉµÃµ½¡ÏCBE=¡ÏBAE£¬ÓÉ´ËÖ¤µÃ¡ÏCBA=¡ÏCBE+¡ÏABE=¡ÏBAE+¡ÏABE=90¡ã£¬´ËÌâµÃÖ¤£®
£¨3£©¡÷ABEÖУ¬¡ÏAEB=90¡ã£¬tan¡ÏBAE=
1 |
3 |
£¨4£©¹ýE×÷EF¡ÎxÖá½»ABÓÚF£¬µ±EµãÔ˶¯ÔÚEFÖ®¼äʱ£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖÊǸöËıßÐΣ»µ±EµãÔ˶¯µ½FµãÓÒ²àʱ£¬¡÷AOEÓë¡÷ABEÖصþ²¿·ÖÊǸöÈý½ÇÐΣ®°´ÉÏÊöÁ½ÖÖÇé¿ö°´Í¼ÐÎÖ®¼äµÄºÍ²î¹Øϵ½øÐÐÇó½â£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒ⣬ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x-3£©£¨x+1£©£®
½«E£¨0£¬3£©´úÈëÉÏʽ£¬½âµÃ£ºa=-1£®
¡ày=-x2+2x+3£®
ÔòµãB£¨1£¬4£©£®
£¨2£©Ö¤Ã÷£ºÈçͼ1£¬¹ýµãB×÷BM¡ÍyÓÚµãM£¬ÔòM£¨0£¬4£©£®
ÔÚRt¡÷AOEÖУ¬OA=OE=3£¬
¡à¡Ï1=¡Ï2=45¡ã£¬AE=
=3
£®
ÔÚRt¡÷EMBÖУ¬EM=OM-OE=1=BM£¬
¡à¡ÏMEB=¡ÏMBE=45¡ã£¬BE=
=
£®
¡à¡ÏBEA=180¡ã-¡Ï1-¡ÏMEB=90¡ã£®
¡àABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£®
ÔÚRt¡÷ABEÖУ¬tan¡ÏBAE=
=
=tan¡ÏCBE£¬
¡à¡ÏBAE=¡ÏCBE£®
ÔÚRt¡÷ABEÖУ¬¡ÏBAE+¡Ï3=90¡ã£¬¡à¡ÏCBE+¡Ï3=90¡ã£®
¡à¡ÏCBA=90¡ã£¬¼´CB¡ÍAB£®
¡àCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ®
£¨3£©½â£ºRt¡÷ABEÖУ¬¡ÏAEB=90¡ã£¬tan¡ÏBAE=
£¬sin¡ÏBAE=
£¬cos¡ÏBAE=
£»
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡÷DEP±ØΪֱ½ÇÈý½ÇÐΣ»
¢ÙDEΪб±ßʱ£¬P1ÔÚxÖáÉÏ£¬´ËʱP1ÓëOÖغϣ»
ÓÉD£¨-1£¬0£©¡¢E£¨0£¬3£©£¬µÃOD=1¡¢OE=3£¬¼´tan¡ÏDEO=
=tan¡ÏBAE£¬¼´¡ÏDEO=¡ÏBAE
Âú×ã¡÷DEO¡×¡÷BAEµÄÌõ¼þ£¬Òò´Ë OµãÊÇ·ûºÏÌõ¼þµÄP1µã£¬×ø±êΪ£¨0£¬0£©£®
¢ÚDEΪ¶ÌÖ±½Ç±ßʱ£¬P2ÔÚxÖáÉÏ£»
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡ÏDEP2=¡ÏAEB=90¡ã£¬sin¡ÏDP2E=sin¡ÏBAE=
£»
¶øDE=
=
£¬ÔòDP2=DE¡Âsin¡ÏDP2E=
¡Â
=10£¬OP2=DP2-OD=9
¼´£ºP2£¨9£¬0£©£»
¢ÛDEΪ³¤Ö±½Ç±ßʱ£¬µãP3ÔÚyÖáÉÏ£»
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡ÏEDP3=¡ÏAEB=90¡ã£¬cos¡ÏDEP3=cos¡ÏBAE=
£»
ÔòEP3=DE¡Âcos¡ÏDEP3=
¡Â
=
£¬OP3=EP3-OE=
£»
×ÛÉÏ£¬µÃ£ºP1£¨0£¬0£©£¬P2£¨9£¬0£©£¬P3£¨0£¬-
£©£®
£¨4£©½â£ºÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£®
½«A£¨3£¬0£©£¬B£¨1£¬4£©´úÈ룬µÃ
£¬½âµÃ
£®
¡ày=-2x+6£®
¹ýµãE×÷ÉäÏßEF¡ÎxÖá½»ABÓÚµãF£¬µ±y=3ʱ£¬µÃx=
£¬¡àF£¨
£¬3£©£®
Çé¿öÒ»£ºÈçͼ2£¬µ±0£¼t¡Ü
ʱ£¬Éè¡÷AOEƽÒƵ½¡÷GNMµÄλÖã¬MG½»ABÓÚµãH£¬MN½»AEÓÚµãS£®
ÔòON=AG=t£¬¹ýµãH×÷LK¡ÍxÖáÓÚµãK£¬½»EFÓÚµãL£®
ÓÉ¡÷AHG¡×¡÷FHM£¬µÃ
=
£¬¼´
=
£®
½âµÃHK=2t£®
¡àSÒõ=S¡÷MNG-S¡÷SNA-S¡÷HAG=
¡Á3¡Á3-
£¨3-t£©2-
t•2t=-
t2+3t£®
Çé¿ö¶þ£ºÈçͼ3£¬µ±
£¼t¡Ü3ʱ£¬Éè¡÷AOEƽÒƵ½¡÷PQRµÄλÖã¬PQ½»ABÓÚµãI£¬½»AEÓÚµãV£®
ÓÉ¡÷IQA¡×¡÷IPF£¬µÃ
=
£®¼´
=
£¬
½âµÃIQ=2£¨3-t£©£®
¡ßAQ=VQ=3-t£¬
¡àSÒõ=
IV•AQ=
£¨3-t£©2=
t2-3t+
£®
×ÛÉÏËùÊö£ºs=
£®
½«E£¨0£¬3£©´úÈëÉÏʽ£¬½âµÃ£ºa=-1£®
¡ày=-x2+2x+3£®
ÔòµãB£¨1£¬4£©£®
£¨2£©Ö¤Ã÷£ºÈçͼ1£¬¹ýµãB×÷BM¡ÍyÓÚµãM£¬ÔòM£¨0£¬4£©£®
ÔÚRt¡÷AOEÖУ¬OA=OE=3£¬
¡à¡Ï1=¡Ï2=45¡ã£¬AE=
OA2+OE2 |
2 |
ÔÚRt¡÷EMBÖУ¬EM=OM-OE=1=BM£¬
¡à¡ÏMEB=¡ÏMBE=45¡ã£¬BE=
EM2+BM2 |
2 |
¡à¡ÏBEA=180¡ã-¡Ï1-¡ÏMEB=90¡ã£®
¡àABÊÇ¡÷ABEÍâ½ÓÔ²µÄÖ±¾¶£®
ÔÚRt¡÷ABEÖУ¬tan¡ÏBAE=
BE |
AE |
1 |
3 |
¡à¡ÏBAE=¡ÏCBE£®
ÔÚRt¡÷ABEÖУ¬¡ÏBAE+¡Ï3=90¡ã£¬¡à¡ÏCBE+¡Ï3=90¡ã£®
¡à¡ÏCBA=90¡ã£¬¼´CB¡ÍAB£®
¡àCBÊÇ¡÷ABEÍâ½ÓÔ²µÄÇÐÏߣ®
£¨3£©½â£ºRt¡÷ABEÖУ¬¡ÏAEB=90¡ã£¬tan¡ÏBAE=
1 |
3 |
| ||
10 |
3
| ||
10 |
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡÷DEP±ØΪֱ½ÇÈý½ÇÐΣ»
¢ÙDEΪб±ßʱ£¬P1ÔÚxÖáÉÏ£¬´ËʱP1ÓëOÖغϣ»
ÓÉD£¨-1£¬0£©¡¢E£¨0£¬3£©£¬µÃOD=1¡¢OE=3£¬¼´tan¡ÏDEO=
1 |
3 |
Âú×ã¡÷DEO¡×¡÷BAEµÄÌõ¼þ£¬Òò´Ë OµãÊÇ·ûºÏÌõ¼þµÄP1µã£¬×ø±êΪ£¨0£¬0£©£®
¢ÚDEΪ¶ÌÖ±½Ç±ßʱ£¬P2ÔÚxÖáÉÏ£»
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡ÏDEP2=¡ÏAEB=90¡ã£¬sin¡ÏDP2E=sin¡ÏBAE=
| ||
10 |
¶øDE=
12+32 |
10 |
10 |
| ||
10 |
¼´£ºP2£¨9£¬0£©£»
¢ÛDEΪ³¤Ö±½Ç±ßʱ£¬µãP3ÔÚyÖáÉÏ£»
ÈôÒÔD¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABEÏàËÆ£¬Ôò¡ÏEDP3=¡ÏAEB=90¡ã£¬cos¡ÏDEP3=cos¡ÏBAE=
3
| ||
10 |
ÔòEP3=DE¡Âcos¡ÏDEP3=
10 |
3
| ||
10 |
10 |
3 |
1 |
3 |
×ÛÉÏ£¬µÃ£ºP1£¨0£¬0£©£¬P2£¨9£¬0£©£¬P3£¨0£¬-
1 |
3 |
£¨4£©½â£ºÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£®
½«A£¨3£¬0£©£¬B£¨1£¬4£©´úÈ룬µÃ
|
|
¡ày=-2x+6£®
¹ýµãE×÷ÉäÏßEF¡ÎxÖá½»ABÓÚµãF£¬µ±y=3ʱ£¬µÃx=
3 |
2 |
3 |
2 |
Çé¿öÒ»£ºÈçͼ2£¬µ±0£¼t¡Ü
3 |
2 |
ÔòON=AG=t£¬¹ýµãH×÷LK¡ÍxÖáÓÚµãK£¬½»EFÓÚµãL£®
ÓÉ¡÷AHG¡×¡÷FHM£¬µÃ
AG |
FM |
HK |
HL |
t | ||
|
HK |
3-HK |
½âµÃHK=2t£®
¡àSÒõ=S¡÷MNG-S¡÷SNA-S¡÷HAG=
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
Çé¿ö¶þ£ºÈçͼ3£¬µ±
3 |
2 |
ÓÉ¡÷IQA¡×¡÷IPF£¬µÃ
AQ |
FP |
IQ |
IP |
3-t | ||
t-
|
IQ |
3-IQ |
½âµÃIQ=2£¨3-t£©£®
¡ßAQ=VQ=3-t£¬
¡àSÒõ=
1 |
2 |
1 |
2 |
1 |
2 |
9 |
2 |
×ÛÉÏËùÊö£ºs=
|
µãÆÀ£º¸ÃÌ⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣬Éæ¼°µ½¶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢ÇÐÏßµÄÅж¨¡¢ÏàËÆÈý½ÇÐεÄÅж¨¡¢Í¼ÐÎÃæ»ýµÄ½â·¨µÈÖصã֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄѶÈϵÊý½Ï´ó£®´ËÌâµÄÄѵãÔÚÓÚºóÁ½¸öСÌ⣬ËüÃǶ¼ÐèÒª·ÖÇé¿ö½øÐÐÌÖÂÛ£¬ÈÝÒ׳öÏÖ©½âµÄÇé¿ö£®ÔÚ½â´ð¶¯µãÀàµÄº¯ÊýÎÊÌâʱ£¬Ò»¶¨²»ÒªÒÅ©¶ÔÓ¦µÄ×Ô±äÁ¿È¡Öµ·¶Î§£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿