ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪM£¨1£¬0£©£¬Ö±Ïßy=x+mÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA£¬BÁ½µã£¬ÆäÖÐAµãµÄ×ø±êΪ£¨3£¬4£©£¬BµãÔÚyÖáÉÏ£®
£¨1£©ÇómµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚxÖáÉÏÕÒÒ»µãQ£¬Ê¹¡÷QABµÄÖܳ¤×îС£¬²¢Çó³ö´ËʱQµã×ø±ê£»
£¨3£©ÈôP£¨a£¬0£©ÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýP×÷xÖáµÄ´¹Ïß·Ö±ðÓëÖ±ÏßABºÍ¶þ´Îº¯ÊýµÄͼÏó½»ÓÚD¡¢EÁ½µã£®
¢ÙÉèÏ߶ÎDEµÄ³¤Îªh£¬µ±0£¼a£¼3ʱ£¬ÇóhÓëaÖ®¼äµÄº¯Êý¹Øϵʽ£»
¢ÚÈôÖ±ÏßABÓëÅ×ÎïÏߵĶԳÆÖá½»µãΪN£¬ÎÊÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔM¡¢N¡¢D¡¢EΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-1£©2£¬
¡ßµãA£¨3£¬4£©ÔÚÅ×ÎïÏßÉÏ£¬Ôò4=a£¨3-1£©2£¬
½âµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=£¨x-1£©2
¡ßµãA£¨3£¬4£©Ò²ÔÚÖ±Ïßy=x+m£¬¼´4=3+m£¬
½âµÃm=1£»
£¨2£©Ö±Ïßy=x+1ÓëyÖáµÄ½»µãBµÄ×ø±êΪB£¨0£¬1£©£¬
Bµã¹ØÓÚxÖáµÄ¶Ô³ÆµãB¡äµãµÄ×ø±êΪB¡ä£¨0£¬-1£©£¬
ÉèÖ±ÏßAB¡äµÄ½âÎöʽΪy=kx+b£¬
½«A¡¢B¡äÁ½µã×ø±ê´úÈëy=kx+b£¬
½âµÃk=£¬b=-1£¬
¡àÉèÖ±ÏßABµÄ½âÎöʽΪy=x-1£¬
µ±A¡¢Q¡¢B¡äÈýµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬
AQ+BQµÄÖµ×îС£¬¼´¡÷QABµÄÖܳ¤×îС£¬
Qµã¼´ÎªÖ±ÏßAB¡äÓëxÖáµÄ½»µã£®
Qµã×ø±êΪ
£¨3£©¢ÙÒÑÖªPµã×ø±êΪP£¨a£¬0£©£¬ÔòEµã×ø±êΪE£¨a£¬a2-2a+1£©£¬Dµã×ø±êΪD£¨a£¬a+1£©£¬
h=DE=yD-yE=a+1-£¨a2-2a+1£©=-a2+3a£¬
¡àhÓëaÖ®¼äµÄº¯Êý¹ØϵʽΪh=-a2+3a£¨0£¼a£¼3£©
¢Ú´æÔÚÒ»µãP£¬Ê¹ÒÔM¡¢N¡¢D¡¢EΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐÎ
ÀíÓÉÊÇ¡ßM£¨1£¬0£©£¬
¡à°Ñx=1´úÈëy=x+1µÃ£ºy=2£¬
¼´N£¨1£¬2£©£¬
¡àMN=2£¬
ҪʹËıßÐÎNMEDÊÇƽÐÐËıßÐΣ¬±ØÐëDE=MN=2£¬
ÓÉ¢ÙÖªDE=|-a2+3a|£¬
¡à2=|-a2+3a|£¬
½âµÃ£ºa1=2£¬a2=1£¬a3=£¬a4=£¬
¡à£¨2£¬0£©£¬£¨1£¬0£©£¨ÒòΪºÍMÖغϣ¬ÉáÈ¥£©£¨£¬0£©£¬£¨£¬0£©
¡àPµÄ×ø±êÊÇ£¨2£¬0£©£¬£¨£¬0£©£¬£¨£¬0£©£®
·ÖÎö£º£¨1£©½«Aµã×ø±ê·Ö±ð´úÈëÅ×ÎïÏßµÄÖ±Ïߣ¬±ã¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽºÍmµÄÖµ£»
£¨2£©Ê¹¡÷QABµÄÖܳ¤×îС£¬¼´ÊÇÇóAQ+BQµÄÖµ×îС£¬×÷³öBµã¹ØÓÚxÖáµÄ¶Ô³ÆµãB¡ä£¬µ±A¡¢Q¡¢B¡äÈýµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬¡÷QABµÄÖܳ¤×îС£»
£¨3£©¢Ù¸ù¾ÝPµã×ø±ê·Ö±ðÇó³öDEÁ½µã×ø±ê£¬±ã¿ÉÇó³öhÓëaÖ®¼äµÄº¯Êý¹Øϵʽ£»
¢Ú´æÔÚ£¬Pµã×ø±êΪ£¨£¬0£©£¬£¨£¬0£©£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĹ«Ê½µÄÇ󷨺ÍÈý½ÇÐεÄÐÔÖʵÈ֪ʶµã£¬ÊǸ÷µØÖп¼µÄÈȵãºÍÄѵ㣬½âÌâʱעÒâÊýÐνáºÏÊýѧ˼ÏëµÄÔËÓã¬Í¬Ñ§ÃÇÒª¼ÓǿѵÁ·£¬ÊôÓÚÖеµÌ⣮
¡ßµãA£¨3£¬4£©ÔÚÅ×ÎïÏßÉÏ£¬Ôò4=a£¨3-1£©2£¬
½âµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=£¨x-1£©2
¡ßµãA£¨3£¬4£©Ò²ÔÚÖ±Ïßy=x+m£¬¼´4=3+m£¬
½âµÃm=1£»
£¨2£©Ö±Ïßy=x+1ÓëyÖáµÄ½»µãBµÄ×ø±êΪB£¨0£¬1£©£¬
Bµã¹ØÓÚxÖáµÄ¶Ô³ÆµãB¡äµãµÄ×ø±êΪB¡ä£¨0£¬-1£©£¬
ÉèÖ±ÏßAB¡äµÄ½âÎöʽΪy=kx+b£¬
½«A¡¢B¡äÁ½µã×ø±ê´úÈëy=kx+b£¬
½âµÃk=£¬b=-1£¬
¡àÉèÖ±ÏßABµÄ½âÎöʽΪy=x-1£¬
µ±A¡¢Q¡¢B¡äÈýµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬
AQ+BQµÄÖµ×îС£¬¼´¡÷QABµÄÖܳ¤×îС£¬
Qµã¼´ÎªÖ±ÏßAB¡äÓëxÖáµÄ½»µã£®
Qµã×ø±êΪ
£¨3£©¢ÙÒÑÖªPµã×ø±êΪP£¨a£¬0£©£¬ÔòEµã×ø±êΪE£¨a£¬a2-2a+1£©£¬Dµã×ø±êΪD£¨a£¬a+1£©£¬
h=DE=yD-yE=a+1-£¨a2-2a+1£©=-a2+3a£¬
¡àhÓëaÖ®¼äµÄº¯Êý¹ØϵʽΪh=-a2+3a£¨0£¼a£¼3£©
¢Ú´æÔÚÒ»µãP£¬Ê¹ÒÔM¡¢N¡¢D¡¢EΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐÎ
ÀíÓÉÊÇ¡ßM£¨1£¬0£©£¬
¡à°Ñx=1´úÈëy=x+1µÃ£ºy=2£¬
¼´N£¨1£¬2£©£¬
¡àMN=2£¬
ҪʹËıßÐÎNMEDÊÇƽÐÐËıßÐΣ¬±ØÐëDE=MN=2£¬
ÓÉ¢ÙÖªDE=|-a2+3a|£¬
¡à2=|-a2+3a|£¬
½âµÃ£ºa1=2£¬a2=1£¬a3=£¬a4=£¬
¡à£¨2£¬0£©£¬£¨1£¬0£©£¨ÒòΪºÍMÖغϣ¬ÉáÈ¥£©£¨£¬0£©£¬£¨£¬0£©
¡àPµÄ×ø±êÊÇ£¨2£¬0£©£¬£¨£¬0£©£¬£¨£¬0£©£®
·ÖÎö£º£¨1£©½«Aµã×ø±ê·Ö±ð´úÈëÅ×ÎïÏßµÄÖ±Ïߣ¬±ã¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽºÍmµÄÖµ£»
£¨2£©Ê¹¡÷QABµÄÖܳ¤×îС£¬¼´ÊÇÇóAQ+BQµÄÖµ×îС£¬×÷³öBµã¹ØÓÚxÖáµÄ¶Ô³ÆµãB¡ä£¬µ±A¡¢Q¡¢B¡äÈýµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬¡÷QABµÄÖܳ¤×îС£»
£¨3£©¢Ù¸ù¾ÝPµã×ø±ê·Ö±ðÇó³öDEÁ½µã×ø±ê£¬±ã¿ÉÇó³öhÓëaÖ®¼äµÄº¯Êý¹Øϵʽ£»
¢Ú´æÔÚ£¬Pµã×ø±êΪ£¨£¬0£©£¬£¨£¬0£©£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĹ«Ê½µÄÇ󷨺ÍÈý½ÇÐεÄÐÔÖʵÈ֪ʶµã£¬ÊǸ÷µØÖп¼µÄÈȵãºÍÄѵ㣬½âÌâʱעÒâÊýÐνáºÏÊýѧ˼ÏëµÄÔËÓã¬Í¬Ñ§ÃÇÒª¼ÓǿѵÁ·£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Áз½³Ì»ò·½³Ì×é½âÓ¦ÓÃÌ⣺ÎÒ¹úÊÇÒ»¸öÑÏÖØË®×ÊԴȱ·¦µÄ¹ú¼Ò£¬ÎªÁ˹ÄÀø¾ÓÃñ½ÚÔ¼ÓÃË®£¬Ä³ÊгÇÇøË®·Ñ°´Ï±í¹æ¶¨ÊÕÈ¡£ºÑ§ÉúÕÅΰ¼ÒÈýÔ·ݹ²¸¶Ë®·Ñ17Ôª£¬Ëû¼ÒÈýÔ·ÝÓÃË®¶àÉÙ¶Ö£¿
ÿ»§Ã¿ÔÂÓÃË®Á¿ | ²»³¬¹ý10¶Ö£¨º¬10¶Ö£© | ³¬¹ý10¶ÖµÄ²¿·Ö |
Ë®·Ñµ¥¼Û | 1.30Ôª/¶Ö | 2.00Ôª/¶Ö |