题目内容

【题目】等边三角形ABC内接于O,连接OAOBOC,延长AO分别交BC于点P弧BC于点D,连接BDCD

(1)判断四边形BDCO是哪一种特殊四边形,并说明理由;

(2)若等边三角形ABC的边长6cm,O的半径;

(3)在劣弧BD上有一点Q,请求出弓形BQD的面积.

【答案】(1)四边形BDCO是菱形理由见解析;(2)6;(3)6π-9

【解析】

(1)可先由四边形各角的大小求出各边之间的关系,然后即可判断四边形BDCO为何种特殊四边形;

(2)先由菱形性质求出BP的长,再由等边三角形性质及求出∠POB的角度,然后即可由三角形边角关系求出OB的长,即⊙O的半径;

(3)弓形BQD的面积可由求扇形OBD与三角形OBD之差间接求得.

解:(1)四边形BDCO是菱形理由如下:

ABBCAC

∴∠AOBBOCCOA=120°,

∴∠BOD=180°﹣AOB=60°,

∴∠COD=180°﹣AOC=60°;

又∵OBOD

∴△OBD为正三角形,

OBODBD

同理可得OCCD

OBOCBOCD即四边形BDCO是菱形;

(2)由菱形性质可知,BP=BC=×6 =3

∵△ABC为等边三角形,∠PBO=30°,OP=3,BO=6,

∴⊙O的半径OB6.

(3)S弓形BQD=S扇形-SBOD=××62 =6π-9

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网