题目内容

【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC.

(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

【答案】
(1)解:如图,连接OC,

沿CD翻折后,点A与圆心O重合,

∴OM= OA= ×2=1,CD⊥OA,

∵OC=2,

∴CD=2CM=2 =2 =2


(2)证明:∵PA=OA=2,AM=OM=1,CM= CD= ,∠CMP=∠OMC=90°,

∴PC= = =2

∵OC=2,PO=2+2=4,

∴PC2+OC2=(2 2+22=16=PO2

∴∠PCO=90°,

∴PC是⊙O的切线


(3)解:解:GEGF是定值,证明如下,

连接GO并延长,交⊙O于点H,连接HF

∵点G为 的中点

∴∠GOE=90°,

∵∠HFG=90°,且∠OGE=∠FGH

∴△OGE∽△FGH

=

∴GEGF=OGGH=2×4=8.


【解析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;(2)根据勾股定理求出PC,然后利用勾股定理的逆定理求出∠PCO=90°,再根据圆的切线判定即可;(3)连接GO并延长,交⊙O于点H,连接HF,根据垂径定理得出∠GOE=90°,再判断出△OGE∽△FGH最后根据相似三角形的性质得出比例式,进而得出GEGF=OGGH=2×4=8.。
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对勾股定理的逆定理的理解,了解如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网