题目内容
【题目】如图,在下列条件中,不能证明△ABD≌△ACD的是( )
A. BD=DC,AB=AC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
【答案】D
【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.
解:A、∵在△ABD和△ACD中,AD=AD,AB=AC,BD=DC,∴△ABD≌△ACD(SSS),故本选项错误;
B、∵在△ABD和△ACD中,BD=DC,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(SAS),故本选项错误;
C、∵在△ABD和△ACD中,∠BAD=∠CAD,∠B=∠C,AD=AD,∴△ABD≌△ACD(AAS),故本选项错误;
D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;
故选D.
练习册系列答案
相关题目
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.