题目内容

【题目】对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为

【答案】有两个不相等的实数根
【解析】解:∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,

∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0

∴此方程有两个不相等的实数根,

所以答案是有两个不相等的实数根.


【考点精析】认真审题,首先需要了解求根公式(根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网