ÌâÄ¿ÄÚÈÝ
£¨Âú·Ö13·Ö£©Èçͼ12.1£¬ÒÑÖªÅ×ÎïÏß¾¹ý×ø±êÔµãOºÍxÖáÉÏÁíÒ»µãE(4,0)£¬¶¥µãMµÄ×ø±êΪ (m,4)£¬Ö±½ÇÌÝÐÎABCDµÄ¶¥µãAÓëµãOÖغϣ¬AD¡¢AB·Ö±ðÔÚxÖá¡¢yÖáÉÏ£¬ÇÒBC=1£¬AD=2£¬AB=3.
£¨1£©ÇómµÄÖµ¼°¸ÃÅ×ÎïÏߵĺ¯Êý¹Øϵʽ£»
£¨2£©½«Ö±½ÇÌÝÐÎABCDÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËٶȴÓͼ12.1ËùʾµÄλÖÃÑØxÖáµÄÕý·½ÏòÔÈËÙƽÐÐÒƶ¯£¬Í¬Ê±Ò»¶¯µãPÒ²ÒÔÏàͬµÄËٶȴӵãA³ö·¢ÏòµãBÔÈËÙÒƶ¯£¬ÉèËüÃÇÔ˶¯µÄʱ¼äΪtÃë(0¡Üt¡Ü3)£¬Ö±ÏßABÓë¸ÃÅ×ÎïÏߵĽ»µãΪN(Èçͼ12.2Ëùʾ).
¢Ùµ±tΪºÎֵʱ£¬¡÷PNCÊÇÒÔPNΪµ×±ßµÄµÈÑüÈý½ÇÐΣ»
¢ÚÉèÒÔP¡¢N¡¢C¡¢DΪ¶¥µãµÄ¶à±ßÐÎÃæ»ýΪS£¬ÊÔÎÊSÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉÒÑÖª£¬¸ù¾ÝÅ×ÎïÏßµÄÖá¶Ô³ÆÐÔ£¬µÃm=2£¬
¡à ¶¥µãMµÄ×ø±êΪ(2,4)£¬ ¡¡¡¡¡¡(1·Ö)
¹Ê¿ÉÉèÆä¹ØϵʽΪy=a(x-2)2+4.
ÓÖÅ×ÎïÏß¾¹ýO(0,0)£¬ÓÚÊǵÃa(0-2)2+4=0£¬½âµÃ a=-1. ¡¡¡(3·Ö)
¡à ËùÇóº¯Êý¹ØϵʽΪy=-(x-2)2+4£¬¼´y=-x2+4x. ¡¡¡(4·Ö)
£¨2£©¢Ù ¡ß µãAÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒNÔÚÅ×ÎïÏßÉÏ£¬CB¡ÍPN,
¡à OA=AP=t£¬
¡à µãP£¬B£¬NµÄ×ø±ê·Ö±ðΪ(t,t)£¬(t,3)£¬(t, -t2+4t).
¡à BP=3-t£¬AN= -t2+4t£¨0¡Üt¡Ü3£©.
¡à PN=AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)¡Ý0. ¡¡¡(6·Ö)
ҪʹµÃ¡÷PNCÊÇÒÔPNΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬
Ö»ÐèPN=2BP£¬¼´-t2+3t=2(3-t)£¬
ÕûÀí£¬µÃt2-5t+6=0£¬½âµÃ t1=2£¬t2=3.
µ±t=3ʱ£¬P£¬NÁ½µãÖغϣ¬²»·ûºÏÌâÒ⣬ÉáÈ¥.
¡à µ±t=2ʱ£¬¡÷PNCÊÇÒÔPNΪµ×±ßµÄµÈÑüÈý½ÇÐÎ. ¡¡¡(8·Ö)
¢Ú S´æÔÚ×î´óÖµ. ¡¡¡(9·Ö)
£¨¢¡£©µ±PN=0£¬¼´t=0»òt=3ʱ£¬ÒÔµãP£¬N£¬C£¬DΪ¶¥µãµÄ¶à±ßÐÎÊÇÈý½ÇÐÎ.
Èôt=0£¬ÔòS=AD¡¤AB=¡¤3¡¤2=3.
Èôt=3£¬ÔòS=BC¡¤AB=¡¤1¡¤3=.
£¨¢¢£©µ±PN¡Ù0£¬¼´0£¼t£¼3ʱ£¬ÒÔµãP£¬N£¬C£¬DΪ¶¥µãµÄ¶à±ßÐÎÊÇËıßÐÎ.
Á¬½áPD£¬CN£¬Ôò
S=SËıßÐÎANCD-S¡÷ADP= SÌÝÐÎABCD+S¡÷BCN -S¡÷ADP
=(BC+AD)¡¤AB+BN¡¤BC-AP¡¤AD
=(1+2)¡¤3+(-t2+4t- 3)¡¤1-t¡¤2
=-t2+t+ 3=-(t-1)2+.
ÓÉ-£¼0£¬0£¼t£¼3£¬µ±t=1ʱ£¬S×î´ó=.
×ÛÉÏËùÊö£¬µ±t=1ʱ£¬ÒÔµãP£¬N£¬C£¬DΪ¶¥µãµÄ¶à±ßÐÎÃæ»ýÓÐ×î´óÖµ£¬
Õâ¸ö×î´óֵΪ. ¡¡¡¡¡¡(13·Ö)
½âÎö