题目内容
【题目】如图,AB是⊙O的直径,点C、D在半圆上,,过D作DE⊥BC于E.
(1)求证:DE是⊙O的切线.
(2)若DE=2CE=4,求⊙O的半径.
【答案】(1)证明见解析;(2)5
【解析】
(1)如图,连接OD、AC,由AB是直径可得∠ACB=90°,根据DE⊥BC可得DE//AC,根据垂径定理的推论可得OD⊥AC,即可证明OD⊥DE,由点D在圆上即可证明DE是⊙O的切线;(2)作OF⊥BC于F,可得四边形OFED是矩形,可得OF=DE=4,OD=EF,由垂径定理可得BF=CF,设⊙O的半径为R,在Rt△AOF中,利用勾股定理求出R值即可.
(1)如图,连接OD、AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴AC⊥BC,
∵DE⊥BC,
∴DE∥AC,
∵,
∴OD⊥AC,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)如图,作OF⊥BC于F,
∴BF=CF,
∵DE⊥BE,OD⊥DE,OF⊥BC,
∴四边形OFED是矩形,
∴OF=DE=4,OD=EF,
∵DE=2CE=4,
∴CE=2,
设⊙O的半径为R,则BF=CF=R﹣2,
在Rt△BOF中,BF2+OF2=OA2,
∴(R﹣2)2+42=R2,
解得R=5,
即⊙O的半径为5.
【题目】炎热的夏天来临之际.为了调查我校学生消防安全知识水平,学校组织了一次全校的消防安全知识培训,培训完后进行测试,在全校2400名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.
(收集数据)
男生15名学生测试成绩统计如下:
68,72,89,85,82,85,74,92,80,85,76,85,69,78,80
女生15名学生测试成绩统计如下:(满分100分)
82,88,83,76,73,78,67,81,82,80,80,86,82,80,82
按如下分数段整理、描述这两组样本数据:
组别 频数 | 65.5~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
男生 | 2 | 2 | 4 | 5 | 1 | 1 |
女生 | 1 | 1 | 5 | 6 | 2 | 0 |
(分析数据)
(1)两组样本数据的平均数、众数、中位数、方差如下表所示:
班级 | 平均数 | 众数 | 中位数 | 方差 |
男生 | 80 | x | 80 | 45.9 |
女生 | 80 | 82 | y | 24.3 |
在表中:x=_____;y=_____.
(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中消防安全知识合格的学生有______人.
(3)通过数据分析得到的结论是女生掌握消防安全相关知识的整体水平比男生好,请从两个方面说明理由.