题目内容

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.

(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

【答案】
(1)证明:∵O是AC的中点,且EF⊥AC,

∴AF=CF,AE=CE,OA=OC,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AFO=∠CEO,

在△AOF和△COE中,

∴△AOF≌△COE(AAS),

∴AF=CE,

∴AF=CF=CE=AE,

∴四边形AECF是菱形


(2)解:∵四边形ABCD是矩形,

∴CD=AB=

在Rt△CDF中,cos∠DCF= ,∠DCF=30°,

∴CF= =2,

∵四边形AECF是菱形,

∴CE=CF=2,

∴四边形AECF是的面积为:ECAB=2


【解析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;
(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网