ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ò»´Îº¯ÊýµÄͼÏóÓë·´±ÈÀýº¯Êýy1£½£
(x<0)µÄͼÏóÏཻÓÚÕýAµã£¬ÓëyÖá¡¢xÖá·Ö±ðÏཻÓÚB¡¢CÁ½µã£¬ÇÒC(2£¬0)£®µ±x<£1ʱ£¬Ò»´Îº¯ÊýÖµ´óÓÚ·´±ÈÀýº¯ÊýÖµ£»µ±x>£1ʱ£¬Ò»´Îº¯ÊýֵСÓÚ·´±ÈÀýº¯ÊýÖµ
![]()
1.ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ
2.É躯Êýy2£½
(x>0)µÄͼÏóÓëy1£½£
(x<0)µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÔÚy2£½
(x>0)µÄͼÏóÉÏȡһµãP(PµãµÄºá×ø±ê´óÓÚ2)£¬¹ýP×÷PQ¡ÍxÖᣬ´¹×ãÊÇQ£¬ÈôËıßÐÎBCQPµÄÃæ»ýµÈÓÚ2£¬ÇóPµãµÄ×ø±ê
1.y=-x+2
2.P![]()
½âÎö:£º£¨1£©¡ßx£¼-1ʱ£¬Ò»´Îº¯ÊýÖµ´óÓÚ·´±ÈÀýº¯ÊýÖµ£¬µ±x£¾-1ʱºò£¬Ò»´Îº¯ÊýֵСÓÚ·´±ÈÀýº¯ÊýÖµ£®
¡àAµãµÄºá×ø±êÊÇ-1£¬
¡àA£¨-1£¬3£©£¬
ÉèÒ»´Îº¯ÊýµÄ½âÎöʽΪy=kx+b£¬ÒòÖ±Ïß¹ýA¡¢C£¬
Ôò
£¬
½âÖ®µÃ
£¬
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-x+2£»
£¨2£©¡ßy2£½
µÄͼÏóÓëy1£½£
(x<0)µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬
¡ày2=
£¨x£¾0£©£¬
¡ßBµãÊÇÖ±Ïßy=-x+2ÓëyÖáµÄ½»µã£¬
¡àB£¨0£¬2£©£¬
Éèp£¨n£¬
£©n£¾2£¬
SËıßÐÎBCQP=SËıßÐÎOQPB-S¡÷OBC=2£¬
¡à
£¨2+
£©n-
¡Á2¡Á2=2£¬
n=
£¬
¡àP![]()