题目内容

【题目】抛物线是常数),,顶点坐标为.给出下列结论:①若点与点在该抛物线上,当时,则;②关于的一元二次方程无实数解,那么(

A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误

【答案】A

【解析】

①根据二次函数的增减性进行判断便可;
②先把顶点坐标代入抛物线的解析式,求得m,再把m代入一元二次方程ax2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.

解:①∵顶点坐标为,

∴点(ny1)关于抛物线的对称轴x=的对称点为(1-ny1),

∴点(1-ny1)与在该抛物线的对称轴的右侧图像上,

a0
∴当x时,yx的增大而增大,

y1y2,故此小题结论正确;

②把 代入y=ax2+bx+c中,得,

∴一元二次方程ax2-bx+c-m+1=0中,

=b2-4ac+4am-4a

∴一元二次方程ax2-bx+c-m+1=0无实数解,故此小题正确;
故选A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网