题目内容
【题目】如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.
(1)求证:AD平分∠CAB;
(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.
①试判断DF与DH的数量关系,并说明理由;
②求⊙O的半径.
【答案】
(1)
证明:如图,连接OD,
∵⊙O与BC相切于点D,
∴OD⊥BC,
∵∠C=90°,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠BAD,
∴AD平分∠CAB
(2)
解:①DF=DH,理由如下:
∵FH平分∠AFE,
∴∠AFH=∠EFH,
又∠DFG=∠EAD=∠HAF,
∴∠DFG=∠EAD=∠HAF,
∴∠DFG+∠GFH=∠HAF+∠HFA,
即∠DFH=∠DHF,
∴DF=DH.
②设HG=x,则DH=DF=1+x,
∵OH⊥AD,
∴AD=2DH=2(1+x),
∵∠DFG=∠DAF,∠FDG=∠FDG,
∴△DFG∽△DAF,
∴ ,
∴ ,
∴x=1,
∵DF=2,AD=4,
∵AF为直径,
∴∠ADF=90°,
∴AF= =
∴⊙O的半径为
【解析】(1)连接OD.先证明OD∥AC,得到∠CAD=∠ODA,再根据OA=OD,得到∠OAD=∠ODA,进而得到∠CAD=∠BAD,即可解答.(2)①DF=DH,利用FH平分∠AFE,得到∠AFH=∠EFH,再证明∠DFH=∠DHF,即可得到DF=DH.②设HG=x,则DH=DF=1+x,证明△DFG∽△DAF,得到 ,即 ,求出x=1,再根据勾股定理求出AF,即可解答.本题考查了切线的性质,相似三角形的判定和性质,本题涉及的知识点:两直线平行,等腰三角形的判定、三角形相似.
【考点精析】通过灵活运用角平分线的性质定理和垂径定理,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.