题目内容

(2013•呼伦贝尔)如图,线段AB、DC分别表示甲乙两座建筑物的高,AB⊥BC,DC⊥BC,两建筑物的水平距离BC为30米,若甲建筑物的高AB=28米,在点A处观察乙建筑物顶部D的仰角为60°,求乙建筑物的高度 (结果保留1位小数,
3
≈1.73
).
分析:首先分析图形,过A作AE⊥DC于点E,根据题意构造直角三角形,在直角三角形△ADE中,求得DE的长度,继而可求得乙建筑物的高度.
解答:解:过点A作AE⊥CD于点E,
∵AB⊥BC,DC⊥BC,
∴四边形ABCE为矩形,
∴AE=BC=30米,AB=CE=28米,
根据题意,得∠DAC=60°,
在Rt△DAE中,
∵tan∠DAE=
DE
AE

∴DE=AEtan∠DAE=30×tan60°=30
3
(米),
则DC=DE+EC=30
3
+28≈79.9(米),
答:乙建筑物的高度约为79.9米.
点评:本题考查了解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网