题目内容
【题目】如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x 轴于点A2;将C2绕点A2旋转180°得C3 , 交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(37,m)在此“波浪线”上,则m的值为 .
【答案】2
【解析】解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),
∴图象与x轴交点坐标为:(0,0),(3,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C13.
∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,
∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),
当x=37时,y=﹣(37﹣36)×(37﹣39)=2.
所以答案是:2.
【考点精析】本题主要考查了二次函数图象的平移的相关知识点,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能正确解答此题.
练习册系列答案
相关题目
【题目】如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).
运动次数 | 运动方向 | 运动路程 | 数轴上对应的数 |
第1次 | _________ | 3 | -3 |
第2次 | 左 | _________ | |
第3次 | _________ | _________ |
回答下列问题:
(1)完成表格;
(2)已知第4次运动的路程为.
①此时数轴上对应的数是_________;
②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?