题目内容
【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)请判断AB与CD的位置关系,并说明理由;
(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有何数量关系?直接写出结论,其数量关系为 .
【答案】(1)平行,理由见解析(2)∠BAE+∠MCD=90°,理由见解析(3)∠BAC=∠CPQ+∠CQP
【解析】
(1)由角平分线的性质得出∠BAC=2∠EAC,∠ACD=2∠ACE,推出∠BAC+∠ACD=180°,即可得出结论;
(2)过E作EF∥AB,则EF∥AB∥CD,得出∠BAE=∠AEF,∠FEC=∠DCE,由∠AEC=90°,推出∠BAE+∠ECD=90°,∠ECD=∠MCD,得出∠BAE+∠MCD=90°;
(3)由平行线的性质得出∠BAC+∠ACD=180°,由三角形内角和定理得出∠CPQ+∠CQP+∠PCQ=180°,即可得出结果.
(1)AB∥CD;理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+∠MCD=90°;理由如下:
过E作EF∥AB,如图2所示:
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD
∴∠ECD=∠MCD
∴∠BAE+∠MCD=90°;
(3)∠BAC=∠CPQ+∠CQP;理由如下:
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠CPQ+∠CQP+∠PCQ=180°,
即(∠CPQ+∠CQP)+∠ACD=180°,
∴∠BAC=∠CPQ+∠CQP.