题目内容
28、阅读下面的证明过程,指出其错误.
已知△ABC.
求证:∠A+∠B+∠C=180度.
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
已知△ABC.
求证:∠A+∠B+∠C=180度.
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
分析:注意作辅助线的方法,不能同时让它满足两个条件.只能作平行线后,根据平行线的性质得到角相等.
解答:解:错误:过A作DE∥BC,且使∠1=∠C,应改为:过A作DE∥BC.∵∠1=∠C(画图),应改为∴∠1=∠C(两直线平行,内错角相等).
证明:过A作DE∥BC,
∵DE∥BC(画图),
∴∠2=∠B,∠1=∠C(两直线平行,内错角相等),
∴∠B+∠C+∠3=∠2+∠1+∠3=180°,
即∠BAC+∠B+∠C=180°.
证明:过A作DE∥BC,
∵DE∥BC(画图),
∴∠2=∠B,∠1=∠C(两直线平行,内错角相等),
∴∠B+∠C+∠3=∠2+∠1+∠3=180°,
即∠BAC+∠B+∠C=180°.
点评:注意掌握作辅助线的叙述方法.
练习册系列答案
相关题目