题目内容
【题目】(8分)如图,一楼房AB后有一假山,其坡度为,山坡坡面上E点处有一休息亭,测的假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
【答案】35+10.
【解析】
试题过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.
试题解析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF, ∴∠ECF=30°,∴EF=CE=10米,CF=10米, ∴BH=EF=10米, HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°, ∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.
答:楼房AB的高为(35+10)米
.
练习册系列答案
相关题目