题目内容

【题目】如图,在△ABC 中,∠ACB=90°,AC=BC,AE BC 边的中线,过点C CF⊥AE,垂足为点 F,过点 B BD⊥BC CF 的延长线于点 D.

(1)试证明:AE=CD;

(2)若 AC=12cm,求线段 BD 的长度.

【答案】(1)证明见解析(2)BD=6cm.

【解析】

(1)证两条线段相等,通常用全等,本题中的AECD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答

(2)由(1)得BD=EC=BC=AC,且AC=12cm,即可求出BD的长.

(1)DBBC,CFAE,

∴∠DCB+D=DCB+AEC=90°,

∴∠D=AEC,

又∵∠DBC=ECA=90°,

BC=CA,

∴△DBC≌△ECA(AAS),

AE=CD;

(2)因为ACE ≌△CBD,所以BD =CE,

因为CE=BC=AC=×12=6cm,

所以BD =6cm.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网