题目内容
【题目】如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C重合),I为△APC的内心,若∠AIC的取值范围为m°<∠AIC<n°,则m+n=_____.
【答案】255.
【解析】
I为△APC的内心,即I为△APC角平分线的交点,利用三角形内角和等于180°及角平分线定义,即可表示出∠AIC,从而得到m,n的值即可.
解:设∠BAP=α,则∠APC=α+30°,
∵∠BAC=90°,
∴∠PCA=60°,∠PAC=90°﹣α,
∵I为△APC的内心,
∴AI、CI分别平分∠PAC,∠PCA,
∴∠IAC=∠PAC,∠ICA=∠PCA,
∴∠AIC=180°﹣(∠IAC+∠ICA)
=180°﹣(∠PAC+∠PCA)
=180°﹣(90°﹣α+60°)
=α+105°
∵0<α<90°,
∴105°<α+105°<150°,即105°<∠AIC<150°,
∴m=105,n=150.
∴m+n=255,
故答案为:255.
练习册系列答案
相关题目