题目内容
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
分析:本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90-3(x-50),然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.
解答:解:(1)由题意得:
y=90-3(x-50)
化简得:y=-3x+240;(3分)
(2)由题意得:
w=(x-40)y
(x-40)(-3x+240)
=-3x2+360x-9600;(3分)
(3)w=-3x2+360x-9600
∵a=-3<0,
∴抛物线开口向下.
当x=-
=60时,w有最大值.
又x<60,w随x的增大而增大.
∴当x=55元时,w的最大值为1125元.
∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)
y=90-3(x-50)
化简得:y=-3x+240;(3分)
(2)由题意得:
w=(x-40)y
(x-40)(-3x+240)
=-3x2+360x-9600;(3分)
(3)w=-3x2+360x-9600
∵a=-3<0,
∴抛物线开口向下.
当x=-
b |
2a |
又x<60,w随x的增大而增大.
∴当x=55元时,w的最大值为1125元.
∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)
点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-
时取得.
b |
2a |
练习册系列答案
相关题目