题目内容
【题目】如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明。
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【答案】(1)50°;(2)①见解析;②见解析;(3)360°.
【解析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【题目】小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们实验的结果如下:
朝上的点数 | ||||||
出现的次数 |
请计算“点朝上”的频率和“点朝上”的频率.
一位同学说:“根据实验,一次实验中出现点朝上的概率最大”.这位同学的说法正确吗?为什么?
小明和小亮各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为的倍数的概率.