题目内容
【题目】已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
【答案】
(1)解:设反比例函数的解析式为y= ,
∵图象经过点P(2,﹣3),
∴k=2×(﹣3)=﹣6,
∴反比例函数的解析式为y=﹣
(2)解:∵点P沿x轴负方向平移3个单位,
∴点P′的横坐标为2﹣3=﹣1,
∴当x=﹣1时,y=﹣ =6,
∴∴n=6﹣(﹣3)=9,
∴沿着y轴平移的方向为正方向
【解析】(1)将点P的坐标代入反比例函数的一般形式即可确定其解析式;(2)首先确定平移后的横坐标,然后代入确定其纵坐标,从而确定沿y轴平移的方向和距离.本题考查了待定系数法确定反比例函数的解析式及坐标的平移的知识,解题的关键时确定反比例函数的解析式.
【考点精析】解答此题的关键在于理解坐标与图形变化-平移的相关知识,掌握新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等.
练习册系列答案
相关题目