题目内容
【题目】已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a-b+c<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是( )个.
A. 4个B. 3个C. 2个D. 1个
【答案】B
【解析】
根据已知画出图象,把x=-2代入得:4a-2b+c=0,2a+c=2b-2a;把x=-1代入得到a-b+c>0;根据-<0,推出a<0,b<0,a+c>b,计算2a+c=2b-2a>0;代入得到2a-b+1=-c+1>0,根据结论判断即可.
根据二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图
把x=-2代入得:4a-2b+c=0,∴①正确;
把x=-1代入得:y=a-b+c>0,如图A点,∴②错误;
∵(-2,0)、(x1,0),且1<x1<2,
∴取符合条件1<x1<2的任何一个x1,-2x1<-2,
∴由一元二次方程根与系数的关系知 x1x2=<-2,
∴不等式的两边都乘以a(a<0)得:c>-2a,
∴2a+c>0,∴③正确;
④由4a-2b+c=0得 2a-b=-,
而0<c<2,∴-1<-<0
∴-1<2a-b<0
∴2a-b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
练习册系列答案
相关题目