题目内容
【题目】如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于( )
A. 140° B. 120° C. 130° D. 无法确定
【答案】C
【解析】
根据三角形内角和定理求出∠ABC+∠ACB=100°,根据角平分线求出∠OBC=∠ABC,∠OCB=∠ACB求出∠OBC+∠OCB=50°,再利用三角形的内角和定理即可.
解:∵∠A=80°,
∴∠ABC+∠ACB=180°-∠A=100°,
∵BO、CO分别是∠ABC和∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=50°,
∴∠BOC=180°-(∠OBC+∠OCB)=130°,
故选:C.
练习册系列答案
相关题目
【题目】某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).
(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,
电量(度) | 电费(元) | |
A | 240 | |
B | ||
合计 | 90 |
(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?