题目内容
(1)求证:DF为⊙O的切线;
(2)求DF的长;
(3)求图中阴影部分的面积.
分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;
(2)由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;
(3)连接OE,求得CF,EF的长,从而利用S直角梯形FDOE-S扇形OED求得阴影部分的面积.
(2)由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;
(3)连接OE,求得CF,EF的长,从而利用S直角梯形FDOE-S扇形OED求得阴影部分的面积.
解答:
证明:(1)连接DO,
∵△ABC是等边三角形,
∴∠A=∠C=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF为⊙O的切线;
(2)∵△OAD是等边三角形,
∴AD=AO=
AB=2,
∴CD=AC-AD=2,
Rt△CDF中,
∵∠CDF=30°,
∴CF=
CD=1,
∴DF=
=
;(5分)
(3)连接OE,由(2)同理可知CE=2,
∴CF=1,∴EF=1,
∴S直角梯形FDOE=
(EF+OD)•DF=
,
∴S扇形OED=
=
,
∴S阴影=S直角梯形FDOE-S扇形OED=
-
.
∵△ABC是等边三角形,
∴∠A=∠C=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF为⊙O的切线;
(2)∵△OAD是等边三角形,
∴AD=AO=
| 1 |
| 2 |
∴CD=AC-AD=2,
Rt△CDF中,
∵∠CDF=30°,
∴CF=
| 1 |
| 2 |
∴DF=
| CD2-CF2 |
| 3 |
(3)连接OE,由(2)同理可知CE=2,
∴CF=1,∴EF=1,
∴S直角梯形FDOE=
| 1 |
| 2 |
3
| ||
| 2 |
∴S扇形OED=
| 60π×22 |
| 360 |
| 2π |
| 3 |
∴S阴影=S直角梯形FDOE-S扇形OED=
3
| ||
| 2 |
| 2π |
| 3 |
点评:此题考查了切线的判定,等边三角形的性质,以及扇形面积求法,其中切线的判定方法为:有点连接证明垂直;无点作垂线,证明垂线段等于半径.
练习册系列答案
相关题目